Endogenous Ranking and Equilibrium Lorenz Curve Across (ex-ante) Identical Countries

By Kiminori Matsuyama Northwestern University

Prepared for

LUISS on 07/03/2013 EIEF on 11/03/2013

1. Introduction:

Rich countries tend to have higher TFPs & *K/L* than the poor, typically interpreted as the *causality* from TFPs and/or *K/L* to *Y/L*, often under the maintained hypotheses
 These countries offer independent observations

Cross-country variations would disappear without any exogenous variations.

- A complementary approach in *trade* (and *economic geography*): even if countries are ex-ante identical, interaction through trade (and factor mobility) could lead to:
 - Ex-post heterogeneity of countries (*symmetry-breaking*) with joint dispersions in *Y/L*, TFPs, & *K/L* emerge as (only) stable patterns. *Two-way causality*
 - > An explanation for *Great Divergence*, *Growth Miracle*
- Most existing studies (Krugman etc.) show this insight in 2-country/2-tradeables. Absent analytical results, the message is unclear with many countries/many tradeables.
 - Does symmetry-breaking split the world into the rich and poor clusters (a polarization)? Or
 - > keep splitting into finer clusters until they become more dispersed & fully ranked?
 - ➤ What determines the shape of the distribution generated by this mechanism?
- This paper offers an *analytically solvable* symmetry-breaking model of trade and inequality among many (ex-ante) identical countries to answer these questions.

• Main Ingredients of the model

A finite number (J) of (ex-ante) identical countries (or regions)

- ➤A unit interval [0,1] of tradeable consumption goods with Cobb-Douglas preferences (indices are normalized so that the expenditure share is uniform, WLOG) à la Dornbusch-Fischer-Samuelson
- Endogenous productivity due to the variety of nontradeable differentiated intermediates, "local producer services," à la Dixit-Stiglitz
- Tradeables produced with Cobb-Douglas tech. with the share of local producer services $\gamma(s)$ increasing (ordered so that the higher indexed are more dependent, WLOG)
- Symmetry-Breaking: Two-way causality between patterns of trade and productivity
 - ➤More variety of local services gives a country CA in tradeables that depend more on such services.
 - Having CA in tradeables that depend more on the local services means a larger market for such services and hence more variety.
- What makes the model tractable: Countries are vastly *outnumbered* by tradeables

A Preview of the Main Results

• Endogenous comparative advantage: For a finite *J*, countries sort themselves into different tradeable goods in any stable equilibrium;

 \triangleright A unit interval [0,1] is partitioned into J subintervals.

 S_j : (Cumulative) share of the *j* poorest countries, characterized by 2^{nd} order difference equation with the 2 terminal conditions

NB: The subintervals are monotone increasing in length

Strict ranking of countries in *Y/L*, TFP, and *K/L*, which are (perfectly) correlated.

- As J→∞, the limit Lorenz curve converges to the unique solution of the 2nd order differential equation with the 2 terminal conditions. Furthermore, it is analytically solvable.
 - Shape of Lorenz Curve is determined by how the tradeables vary in their dependency on local producer services.
 - Comparative Statics: Many key parameters entering in log-submodular way, easy to show their changes cause a Lorenz-dominant shift.
- Welfare effects of trade; We can also answer questions like;

➤ When is trade Pareto-improving?

- ≻If it is not Pareto-improving, "what fractions of countries would lose from trade?
- The answers depend on the diversity of tradeables in their dependence of the services, measured by the Theil index (or entropy).

Organization of this slides (not the paper):

1. Introduction

- 2. Basic Model (Fixed Factor Supply; Without Nontradeable Consumption Goods)
 > Single-country (Autarky) equilibrium (J = 1)
 > Two-country equilibrium (J = 2)
 > Multi-country equilibrium (2 < J < ∞)
 > Limit case (J → ∞); Power-law (truncated Pareto) examples, comparative statics
 > Welfare Effects of Trade
- 3. An Extension with Nontradeable Consumption Goods; Effects of Globalization > Multi-country equilibrium (2 ≤ J < ∞)
 > Limit case (J → ∞)
- 4. An Extension with Variable Factor Supply
 >Multi-country equilibrium (2 ≤ J < ∞)
 >Limit case (J → ∞)
- 5. Concluding Remarks

2. Basic Model: All Factors in Fixed Supply, All Consumer Goods Tradeable

J (inherently) identical countries in the World Economy

Representative Consumers:

- Endowed with *V* units of the (nontradeable) primary factor of production, which may be a composite of capital, labor, etc., as V = F(K, L, ...).
- Cobb-Douglas preferences over **Tradeable Consumer Goods**, $s \in [0,1]$

$$\log U = \int_{0}^{1} \log(X(s)) dB(s) = \int_{0}^{1} \log(X(s)) ds$$

WLOG, we can index the goods by the cumulative expenditure share, B(s) = s.

Tradeable Consumer Goods Sectors $s \in [0,1]$: *Competitive*

Cobb-Douglas unit cost function: $C(s) = \zeta(s)(\omega)^{1-\gamma(s)} (P_N)^{\gamma(s)}$

- ω : the price of the primary factor of production (TFP in equilibrium).
- $P_{N}: \text{ the Dixit-Stiglitz price index of nontradeable producer services, defined by} P_{N} = \left\{ \int_{0}^{n} \left[p(z) \right]^{-\frac{1}{\theta}} dz \right\}^{-\theta} \qquad (\theta = \frac{1}{\sigma 1} > 0)$
 - *n*: Equilibrium variety of producer services
 - θ : the degree of differentiation

 $\gamma(s)$: the share of services in sector-*s*, increasing in $s \in [0,1]$

Nontradeable Producer Services Sector: Monopolistically Competitive

- Primary factor required to supply q units of each variety: T(q) = f + mq
- Constant Mark-Up Pricing: p(z) = (1+v)ωm (0 < v ≤ θ)
 > Unconstrained (Dixit-Stiglitz) monopoly pricing: v = θ
 > Limit pricing: v < θ
- Free Entry-Zero Profit: vmq = f

Unit Cost in Sector-s:

$$C(s) = \zeta(s)(\omega)^{1-\gamma(s)} \left\{ \int_0^n \left[p(z) \right]^{-\frac{1}{\theta}} dz \right\}^{-\theta\gamma(s)} = \zeta(s) \{(1+\nu)m\}^{\gamma(s)}(n)^{-\theta\gamma(s)} \omega$$

 \blacktriangleright Decreasing in *n*; productivity gains from variety à *la* Ethier-Romer

- ➤ High-indexed sectors gain more from greater variety
- > This effect is stronger for a larger θ .

In stable equilibrium, ω and *n* will end up being different across countries.

Single-country (J = 1) or Autarky Case: The economy produces all $s \in [0,1]$.

Let
$$\Gamma^A \equiv \int_0^1 \gamma(s) ds$$
.

- **Producer Services Market:** $npq = n(1+v)m\omega q = \Gamma^{A}Y$,
- With the Zero Profit condition: vmq = f,

• **Primary Factor Market:** $\omega V = (1 - \Gamma^A)Y + n\omega(f + mq),$

\rightarrow

 $n^A \propto \Gamma^A$:

Equilibrium variety depends on the market size for services, which are proportional to the average share of services over all consumer goods sector.

 $Y^{A} = \omega^{A} V = \omega^{A} F(K, L, \dots).$

 ω = the price of the primary factor composite = TFP

Two-Country (J = 2) *Case: Home & Foreign* (*). Suppose $n < n^*$. Then,

•
$$\frac{C(s)}{C^*(s)} = \left(\frac{n}{n^*}\right)^{-\theta\gamma(s)} \left(\frac{\omega}{\omega^*}\right)$$
, increasing in *s*.

A country with a higher n has comparative advantage in higher-indexed sectors.

• H exports
$$s \in [0, S)$$
 & F exports $s \in (S, 1]$, where $\frac{C(S)}{C^*(S)} = \left(\frac{n}{n^*}\right)^{-\theta_{\gamma}(S)} \left(\frac{\omega}{\omega^*}\right) = 1$

Each country must be the least cost producer for a positive measure of tradeables.

•
$$\frac{\omega}{\omega^*} = \left(\frac{n}{n^*}\right)^{\theta_{\gamma}(s)} < 1.$$
 productivity gains from variety

•
$$S(Y + Y^*) = Y = \omega V \& (1 - S)(Y + Y^*) = Y^* = \omega^* V$$

A country's share = the world's expenditure share of the consumer goods it produces.

•
$$n \propto \Gamma^{-}(S) \equiv \frac{1}{S} \int_{0}^{S} \gamma(s) ds < n^{*} \propto \Gamma^{+}(S) \equiv \frac{1}{1-S} \int_{S}^{1} \gamma(s) ds$$

In each country, variety is proportional to the average share of services among its (active) tradeable sectors.

$$\Rightarrow \frac{S}{1-S} = \frac{Y}{Y^*} = \frac{\omega}{\omega^*} = \left(\frac{\Gamma^-(S)}{\Gamma^+(S)}\right)^{\theta_{\gamma}(S)} < 1.$$

Home Exports Foreign Exports

A Symmetric Pair of Stable Asymmetric Equilibria

• Home produces $s \in [0, S]$ and Foreign produces $s \in [S, 1]$,

$$\frac{S}{1-S} = \frac{Y}{Y^*} = \frac{\omega}{\omega^*} = \left(\frac{\Gamma^-(S)}{\Gamma^+(S)}\right)^{\theta\gamma(S)} < 1;$$

• Foreign produces $s \in [0, S]$ and Home produces $s \in [S, 1]$,

$$\frac{1-S}{S} = \frac{Y}{Y^*} = \frac{\omega}{\omega^*} = \left(\frac{\Gamma^+(S)}{\Gamma^-(S)}\right)^{\theta_{\gamma}(S)} > 1.$$

Instability of Symmetric Equilibrium: $n = n^* (= n^A)$

Stable Equilibrium Patterns in the J-Country World:

Index the countries so $\{n_j\}_{j=1}^J$ is monotone increasing. Then,

- $\frac{C_j(s)}{C_{j+1}(s)} = \left(\frac{n_j}{n_{j+1}}\right)^{-\theta\gamma(s)} \left(\frac{\omega_j}{\omega_{j+1}}\right)$, is strictly increasing in *s*:
- The unit interval is partitioned into *J*-subintervals: the *j*-th exports $s \in (S_j, S_{j+1})$, where $\{S_j\}_{j=1}^J$ is given by $S_0 = 0$, $S_J = 1$ and $\frac{C_j(S_j)}{C_{j+1}(S_j)} = \left(\frac{n_j}{n_{j+1}}\right)^{-\theta_{\gamma}(S_j)} \left(\frac{\omega_j}{\omega_{j+1}}\right) = 1$.
- $\{\omega_j\}_{j=1}^{J}$ is monotone increasing. • $Y_j = \omega_j F(K, L, ...) = (S_j - S_{j-1})Y^W$ • $n_j \propto \Gamma_j \equiv \frac{1}{S_j - S_{j-1}} \int_{S_{j-1}}^{S_j} \gamma(s) ds$, hence monotone increasing, as assumed. • $S_{j-1} = \sum_{j=1}^{J} \int_{S_{j-1}}^{S_j} \gamma(s) ds$, hence monotone increasing, as assumed.

 S_i

This can be summarized as:

Proposition 1 (the J-country case):

 $\begin{cases} S_{j} \\ _{j=0}^{J} \end{cases} \text{ solves the nonlinear } 2^{\text{nd}} \text{-order difference equation with the 2 terminal conditions:} \\ \frac{S_{j+1} - S_{j}}{S_{j} - S_{j-1}} = \left(\frac{\Gamma(S_{j}, S_{j+1})}{\Gamma(S_{j-1}, S_{j})} \right)^{\theta_{\gamma}(S_{j})} > 1 \text{ with } S_{0} = 0 \& S_{J} = 1, \\ \text{where} \qquad \Gamma(S_{j-1}, S_{j}) \equiv \frac{1}{S_{j} - S_{j-1}} \int_{S_{j-1}}^{S_{j}} \gamma(s) ds. \end{cases}$

The Lorenz curve, $\Phi^{J}:[0,1] \rightarrow [0,1]$, is the piece-wise linear function, $\Phi^{J}(j/J) = S_{j}$. Clearly,

- Φ^J is strictly increasing & convex;
- $\Phi^{J}(0) = 0 \& \Phi^{J}(1) = 1.$

But, it is not analytically solvable.

- Uniqueness?
- Comparative statics?
- Welfare evaluations?

These problems disappear by $J \rightarrow \infty$.

Calculating the limit Lorenz Curve: $\Phi^J \to \Phi$, as $J \to \infty$

$\frac{1}{S_{i}-S_{i-1}} = \left(\frac{1}{\Gamma(S_{i-1},S_{i})}\right) \qquad \text{with } \Gamma(S_{j-1},S_{j}) \equiv \frac{1}{S_{i}-S_{i-1}}\int_{S_{i-1}} \gamma(s)ds$

By setting
$$x = j/J$$
 and $\Delta x = 1/J$,
 $S_{j+1} - S_j = \Phi(x + \Delta x) - \Phi(x) = \Phi'(x)\Delta x + \Phi''(x)\frac{|\Delta x|^2}{2} + o(|\Delta x|^2),$
 $S_j - S_{j-1} = \Phi(x) - \Phi(x - \Delta x) = \Phi'(x)\Delta x - \Phi''(x)\frac{|\Delta x|^2}{2} + o(|\Delta x|^2),$

from which

LHS =
$$\frac{S_{j+1} - S_j}{S_j - S_{j-1}} = 1 + \frac{\Phi''(x)}{\Phi'(x)} \Delta x + o(|\Delta x|).$$

Likewise,

$$\Gamma(S_{j}, S_{j+1}) = \frac{\int_{\Phi(x)}^{\Phi(x+\Delta x)} \gamma(s) ds}{\Phi(x+\Delta x) - \Phi(x)} = \gamma(\Phi(x)) + \frac{1}{2}\gamma'(\Phi(x))\Phi'(x)\Delta x + o(|\Delta x|)$$

$$\Gamma(S_{j}, S_{j-1}) = \frac{\int_{\Phi(x-\Delta x)}^{\Phi(x)} \gamma(s) ds}{\Phi(x) - \Phi(x-\Delta x)} = \gamma(\Phi(x)) - \frac{1}{2}\gamma'(\Phi(x))\Phi'(x)\Delta x + o(|\Delta x|)$$

from which

$$RHS = \left(\frac{\Gamma(S_j, S_{j+1})}{\Gamma(S_{j-1}, S_j)}\right)^{\theta\gamma(S_j)} = \left(1 + \frac{\gamma'(\Phi(x))}{\gamma(\Phi(x))} \Phi'(x)\Delta x + o(|\Delta x|)\right)^{\theta\gamma(\Phi(x))}$$
$$= 1 + \theta\gamma'(\Phi(x))\Phi'(x)\Delta x + o(|\Delta x|)$$

Combining these yields

$$1 + \frac{\Phi''(x)}{\Phi'(x)}\Delta x + o(|\Delta x|) = 1 + \theta \gamma'(\Phi(x))\Phi'(x)\Delta x + o(|\Delta x|).$$

Hence, as
$$J \to \infty$$
, $\Delta x = 1/J \to 0$,
 $\frac{\Phi''(x)}{\Phi'(x)} = \theta \gamma'(\Phi(x)) \Phi'(x)$.

By integrating once,

$$\log(\Phi'(x)) - \theta \gamma(\Phi(x)) = c_0 \quad \Leftrightarrow \quad \exp(-\theta \gamma(\Phi(x))) \Phi'(x) = e^{c_0}$$

By integrating once again,

$$\int_{0}^{\Phi(x)} e^{-\theta\gamma(s)} ds = c_1 + e^{c_0} x.$$

From $\Phi(0) = 0 \& \Phi(1) = 1$, $\Phi: [0,1] \rightarrow [0,1]$, is determined *uniquely* by

$$\int_{0}^{\Phi(x)} e^{-\theta\gamma(s)} ds = \left[\int_{0}^{1} e^{-\theta\gamma(u)} du\right] x.$$

Question: When does this mechanism lead to a polarization?

Answer: When $\gamma(\bullet)$ can be *approximated* by a two-step function. That is, when there are *effectively* only two tradeables.

NB: This is different from assuming that there are only two tradeable goods. The uniqueness is lost when you do that; See Matsuyama (1996).

Power-Law (Truncated Pareto) Examples (with World GDP normalized on one):

<u> </u>		▲ `	
	Example 1:	Example 2:	Example 3:
	$\gamma(s) = s$	$\gamma(s) = \log \left[1 + (e^{\theta} - 1)s\right]^{\frac{1}{\theta}}$	$\gamma(s) = \log \left[1 + (e^{\lambda} - 1)s \right]^{\frac{1}{\lambda}}$ $(\lambda \neq 0; \neq \theta)$
Inverse Lorenz Curve: $x = H(s)$	$\frac{1-e^{-\theta s}}{1-e^{-\theta}}$	$\log\left[1+(e^{\theta}-1)s\right]^{\frac{1}{\theta}}$	$\frac{\left[1+(e^{\lambda}-1)s\right]^{1-\frac{\theta}{\lambda}}-1}{e^{\lambda-\theta}-1}$
Lorenz Curve: $s = \Phi(x)$	$\log\left[1-(1-e^{-\theta})x\right]$	$\frac{e^{\theta x} - 1}{e^{\theta} - 1}$	$\frac{\left[1+(e^{\lambda-\theta}-1)x\right]^{\frac{\lambda}{\lambda-\theta}}-1}{e^{\lambda}-1}$
Cdf: $x = \Psi(y)$ $= (\Phi')^{-1}(y)$	$\frac{1}{1-e^{-\theta}}-\frac{1}{\theta y}$	$\frac{1}{\theta} \log \left(\frac{e^{\theta} - 1}{\theta} y \right)$	$\frac{\left(\frac{y}{y_{Min}}\right)^{\frac{\lambda}{\theta}-1}-1}{e^{\lambda-\theta}-1} = 1 - \frac{1 - \left(\frac{y}{y_{Max}}\right)^{\frac{\lambda}{\theta}-1}}{1 - e^{\theta-\lambda}}$
Pdf: $\psi(y) = \Psi'(y)$	$\frac{1}{\theta y^2}$	$\frac{1}{\theta y}$	$\left[\frac{(\lambda/\theta)-1}{(y_{Max})^{(\lambda/\theta)-1}-(y_{Min})^{(\lambda/\theta)-1}}\right](y)^{\frac{\lambda}{\theta}-2}$
Support: $[y_{Min}, y_{Max}]$	$\frac{1 - e^{-\theta}}{\theta} \le y$	$\frac{\theta}{e^{\theta} - 1} \le y \le \frac{\theta e^{\theta}}{e^{\theta} - 1}$	$\left(\frac{\lambda}{e^{\lambda}-1}\right)\left(\frac{e^{\lambda-\theta}-1}{\lambda-\theta}\right) \le y$
	$\leq rac{e^{ heta}-1}{ heta}$		$\leq \left(rac{\lambda}{e^{\lambda}-1} ight)\!\left(rac{e^{\lambda- heta}-1}{\lambda- heta} ight)\!e^{ heta}$

A lower λ (more concentrated use of services in narrower sectors) makes the pdf drop faster.

Log-submodularity and Effect of a higher θ : Since $h(s) = \hat{h}(s) / \left[\int_{0}^{1} \hat{h}(u) du \right]$, with $\hat{h}(s) \equiv e^{-\theta \gamma(s)}$ being *log-submodular* in θ and *s*, a higher θ rotates h(s) "clockwise." \rightarrow Lorenz curve "bends" more (a Lorenz-dominant shift), hence a greater inequality.

Welfare Effects of Trade

Proposition 3 (the J-country case): The welfare of the k-th poorest country is

$$\log\left(\frac{U_k}{U^A}\right) = \sum_{j=1}^{J} \log\left(\frac{\omega_k}{\omega_j}\right) (S_j - S_{j-1}) + \theta \sum_{j=1}^{J} \Gamma_j \log\left(\frac{\Gamma_j}{\Gamma^A}\right) (S_j - S_{j-1}).$$

- 1st term: effects on the country's relative productivity, negative for some countries.
- 2nd term; gains from trade (conditional on productivity differences), positive for all.

Proposition 4 (Limit case, $J \rightarrow \infty$): The welfare of the country at 100*x**% is given by $\frac{\log(U(x^*)/U^A)}{\theta} = \gamma(s^*) - \Gamma^A + \int_0^1 \gamma(s) \log\left(\frac{\gamma(s)}{\Gamma^A}\right) ds,$

where $s^* = \Phi(x^*)$ or $x^* = \Phi^{-1}(s^*)$.

- 1st term; Relative productivity effect, negative for some countries.
- 2nd term; gains from trade, conditional on productivity differences, positive for all.

Corollary 1: All countries gain from trade iff
$$1 - \frac{\gamma(0)}{\Gamma^A} \leq \int_0^1 \left(\frac{\gamma(s)}{\Gamma^A}\right) \log\left(\frac{\gamma(s)}{\Gamma^A}\right) ds$$
.
 $\int_0^1 \left(\frac{\gamma(s)}{\Gamma^A}\right) \log\left(\frac{\gamma(s)}{\Gamma^A}\right) ds$: diversity (**Theil index/entropy**) of the tradeables in γ .

Corollary 2: Suppose
$$\frac{\gamma(0)}{\Gamma^A} < 1 - \int_0^1 \left(\frac{\gamma(s)}{\Gamma^A}\right) \log\left(\frac{\gamma(s)}{\Gamma^A}\right) ds$$
. Then, for $s_c > 0$ defined by
 $\gamma(s_c) \equiv \Gamma^A \left[1 - \int_0^1 \left(\frac{\gamma(s)}{\Gamma^A}\right) \log\left(\frac{\gamma(s)}{\Gamma^A}\right) ds\right],$

a): All countries producing $s \in [0, s_c)$ lose from trade.

b): The fraction of the countries that lose, $x_c = H(s_c; \theta)$, is increasing in θ with

 $\lim_{\theta \to 0} x_c = s_c \text{ and } \lim_{\theta \to \infty} x_c = 1.$

3. Two Extensions:

3.1 Nontradeable Consumption Goods:

 $\log U = \tau \int_{0}^{1} \log(X_{T}(s)) ds + (1 - \tau) \int_{0}^{1} \log(X_{N}(s)) ds$

 τ ; the fraction of the consumption goods that are tradeable.

A higher τ causes a Lorenz dominant shift. Globalization through Goods Trade magnifies inequality!

3.2 Variable Factor Supply (through Factor Mobility or Factor Accumulation):

 $V_j = F(K_j, L)$ with $\omega_j F_K(K_j, L) = \rho$ Correlations between *K*/*L* and TFPs and per capita income

For $V = F(K, L) = AK^{\alpha}L^{1-\alpha}$ with $0 < \alpha < 1/(1+\theta)$, a higher $\alpha \rightarrow$ a Lorenz dominant shift.

Globalization through Factor Mobility or Skill-Biased Technological Change magnifies inequality!

In both extensions, the same techniques ($J \rightarrow \infty$ to solve the Lorenz curve analytically & log-submodularity to prove the Lorenz-dominant shifts) work.

In more detail;

3.1. Nontradeable Consumption Goods: Effects of Globalization $\log U = \tau \int_{0}^{1} \log(X_{T}(s)) ds + (1-\tau) \int_{0}^{1} \log(X_{N}(s)) ds$ τ ; the fraction of the consumption goods that are tradeable.

Assume the same distribution of γ among the tradeables and the nontradeables. Then,

Proposition 5 (Equilibrium Lorenz curve: the J-country case):: Let S_j be the cumulative share of the J poorest countries. Then, $\{S_j\}_{j=0}^J$ solves: $\frac{Y_{j+1}}{Y_j} = \frac{\omega_{j+1}}{\omega_j} = \frac{S_{j+1} - S_j}{S_j - S_{j-1}} = \left(\frac{\tau\Gamma(S_j, S_{j+1}) + (1 - \tau)\Gamma^A}{\tau\Gamma(S_{j-1}, S_j) + (1 - \tau)\Gamma^A}\right)^{\theta\gamma(S_j)} > 1$ with $S_0 = 0$ & $S_J = 1$, where $\Gamma(S_{j-1}, S_j) \equiv \frac{1}{S_j - S_{j-1}} \int_{S_{j-1}}^{S_j} \gamma(s) ds$.

Again, following the same steps,

Proposition 6 (Equilibrium Lorenz Curve: Limit Case, $J \to \infty$): The limit equilibrium Lorenz curve, $\lim_{J\to\infty} \Phi^J = \Phi$, solves:

$$\frac{\Phi''(x)}{\Phi'(x)} = \frac{\theta\gamma'(\Phi(x))\Phi'(x)}{1 + \Gamma^A / g\gamma(\Phi(x))} \text{ with } \Phi(0) = 0 \& \Phi(1) = 1$$

whose unique solution is:

$$x = H(\Phi(x); g) \equiv \int_{0}^{\Phi(x)} h(s; g) ds, \text{ where } h(s; g) \equiv \frac{\left(1 + g\gamma(s) / \Gamma^A\right)^{\theta \Gamma^A / g} e^{-\theta\gamma(s)}}{\int_{0}^{1} \left(1 + g\gamma(u) / \Gamma^A\right)^{\theta \Gamma^A / g} e^{-\theta\gamma(u)} du},$$

where $g \equiv \tau / (1 - \tau).$

Notes:

$$\sum_{\tau \to 1} h(s;g) = \lim_{g \to \infty} h(s;g) = h(s) \equiv \frac{e^{-\theta \gamma(s)}}{\int_{0}^{1} e^{-\theta \gamma(u)} du}; \qquad \lim_{\tau \to 0} h(s;g) = \lim_{g \to 0} h(s;g) = 1.$$

⇒ h(s;g) is positive, and strictly decreasing in *s* for g > 0. → $H(\bullet;g)$ is increasing, concave, with H(0;g) = 0 & H(1;g) = 1; → $\Phi(x) = H^{-1}(x;g)$ is increasing, convex, with $\Phi(0) = 0$ & $\Phi(1) = 1$.

Log-submodularity and Effect of globalization (a higher τ or g) or a higher θ :

The graph of h(s) rotates "clockwise."

 \rightarrow the Lorenz curve "bends" more, hence a greater inequality.

Proof: $h(s;g) = \hat{h}(s;g) / \left[\int_{0}^{1} \hat{h}(u;g) du \right]$, where $\hat{h}(s;g) \equiv \left(1 + g\gamma(s) / \Gamma^{A} \right)^{\theta \Gamma^{A}/g} e^{-\theta \gamma(s)}$ is log-submodular in g & s; (also in θ & s).

3.2 Variable Factor Supply:

 $V_j = F(K_j, L)$ with $\omega_j F_K(K_j, L) = \rho$

Two Justifications:

➤Factor Mobility: In a static setting, the rate of return for mobile factors is equalized as they move across borders to seek the highest return.

(If "countries" are interpreted as "metropolitan areas," *K* may include not only capital but also labor, with L representing the immobile "land.")

Factor Accumulation: In a dynamic setting, some factors can be accumulated as the representative agent in each country maximizes

$$\int_{0}^{\infty} u(C_t) e^{-\rho t} dt \qquad \text{s.t.} \quad Y_t = \left[\int_{0}^{1} \log(X_t(s)) ds \right] = C_t + K_t$$

Then, the rate of return is equalized in steady state. (In this case, *K* may include not only physical capital but also human capital.)

Condition for Patterns of Trade:

$$\left(\frac{n_{j}}{n_{j+1}}\right)^{\theta_{\gamma}(S_{j})} = \frac{\omega_{j}}{\omega_{j+1}} = \frac{F_{K}(K_{j+1},L)}{F_{K}(K_{j},L)} < 1 \iff \frac{K_{j+1}}{K_{j}} > 1 \iff \frac{V_{j+1}}{V_{j}} > 1.$$

For the *j*-th country which produces
$$s \in (S_{j-1}, S_j)$$
,
 $n_j = \Gamma_j \left(\frac{\nu V_j}{(1+\nu)f} \right) = \Gamma_j \left(\frac{\nu F(K_j, L)}{(1+\nu)f} \right); \quad Y_j = \omega_j V_j = \omega_j F(K_j, L) = (S_j - S_{j-1})Y^W.$

Hence,

$$\frac{F_{K}(K_{j},L)}{F_{K}(K_{j+1},L)} = \frac{\omega_{j+1}}{\omega_{j}} = \left(\frac{\Gamma_{j+1}}{\Gamma_{j}}\frac{F(K_{j+1},L)}{F(K_{j},L)}\right)^{\theta_{\gamma}(S_{j})} > 1; \qquad \frac{S_{j+1}-S_{j}}{S_{j}-S_{j-1}} = \frac{\omega_{j+1}F(K_{j+1},L)}{\omega_{j}F(K_{j},L)}$$

For $V = F(K, L) = AK^{\alpha}L^{1-\alpha}$ with $0 < \alpha < 1 - 1/\sigma = 1/(1+\theta)$,

$$\frac{Y_{j+1}}{Y_j} = \frac{\omega_{j+1}V_{j+1}}{\omega_j V_j} = \frac{K_{j+1}}{K_j} = \left(\frac{\omega_{j+1}}{\omega_j}\right)^{\frac{1}{1-\alpha}} = \left(\frac{V_{j+1}}{V_j}\right)^{\frac{1}{\alpha}} = \frac{S_{j+1} - S_j}{S_j - S_{j-1}} > 1$$

from which

Proposition 7 (Equilibrium Lorenz curve: the *J*-country case):
Let
$$S_j$$
 be the cumulative share of the J poorest countries. Then, $\{S_j\}_{j=0}^{J}$ solves:
 $\frac{Y_{j+1}}{Y_j} = \frac{K_{j+1}}{K_j} = \left(\frac{\omega_{j+1}}{\omega_j}\right)^{\frac{1}{1-\alpha}} = \frac{S_{j+1} - S_j}{S_j - S_{j-1}} = \left(\frac{\Gamma(S_j, S_{j+1})}{\Gamma(S_{j-1}, S_j)}\right)^{\frac{\partial \gamma(S_j)}{1-\alpha - \alpha \partial \gamma(S_j)}} > 1$ with $S_0 = 0$ & $S_j = 1$,
where $\Gamma(S_{j-1}, S_j) = \frac{1}{S_j - S_{j-1}} \int_{S_{j-1}}^{S_j} \gamma(s) ds$.
Following the same step as before:
Proposition 8 (Equilibrium Lorenz Curve, Limit Case)
The limit equilibrium Lorenz curve, $\lim_{J \to \infty} \Phi^J = \Phi$, solves:
 $\frac{\Phi''(x)}{\Phi'(x)} = \frac{\partial \gamma'(\Phi(x))\Phi'(x)}{1-\alpha - \alpha \partial \gamma(\Phi(x))}$ with $\Phi(0) = 0$ & $\Phi(1) = 1$
whose unique solution is:
 $x = H(\Phi(x); \alpha) = \int_{0}^{\Phi(x)} h(s; \alpha) ds$, where $h(s; \alpha) = \frac{\left(1 - \frac{\alpha \theta}{1-\alpha} \gamma(s)\right)^{1/\alpha}}{1-\alpha - \alpha V(s)}$.

$$= H(\Phi(x);\alpha) \equiv \int_{0}^{\infty} h(s;\alpha) ds, \quad \text{where } h(s;\alpha) \equiv \frac{(1-\alpha^{-1})}{\int_{0}^{1} \left(1 - \frac{\alpha\theta}{1-\alpha}\gamma(u)\right)^{1/\alpha} du}.$$

Log-Submodularity and Effect of a higher α or a higher θ : The graph of h(s) rotates "clockwise." \rightarrow the Lorenz curve "bends" more, hence a greater inequality.

Some Concluding Remarks:

- Symmetry-breaking due to two-way causality; Even without ex-ante heterogeneity, cross-country dispersion and correlations in per capita income, TFPs, and *K/L* ratios emerge as stable equilibrium patterns due to interaction through trade.
- Some countries become richer (poorer) than others because they trade with poorer (richer) countries. They are *not* independent observations.
- This type of analysis does not say that ex-ante heterogeneity is unimportant. Instead, it says that even small ex-ante heterogeneity could be magnified to create huge ex-post heterogeneity, a possible explanation of Great Divergence and Growth Miracle
- This paper demonstrates that this type of analysis does not have to be intractable nor lacking in prediction. Equilibrium distribution is *unique, analytically solvable,* varying with parameters in intuitive ways.
- With a finite countries and a continuum of sectors, this model is more compatible with existing quantitative models of trade (Eaton-Kortum, Alvarez-Lucas, etc.)
- A model with many countries can be more tractable than a model with a few countries.